Jump to Navigation

Overview

Hydrogen Link is a research company in Canada developing new materials, catalysts and synthesis processes for renewable and sustainable technologies. It focuses strongly on green chemistry principles, which target the elimination of toxic and non-sustainable reagents and solvents while developing environment friendly alternatives. 

In the area of green energy, Hydrogen Link focuses on technologies such as hydrogen storage, hydrogen generation and various types of hydrogen transfer reactions. Hydrogen Link provides innovative solutions to the challenges of emerging hydrogen technology, achieving this through research of new hydride systems and catalysts.

Our current activities are centered on the following fields:

  • Development of advanced nano-catalysts
  • Hydrogen storage in metal hydrides
  • Hydrogen generation methods
  • Specialty reagents, catalysts and materials  for sustainable, environment-friendly technologies
  • Synthesis and manufacturing methods of new “green” materials and processes

Hydrogen Link develops its products and processes in partnership with industry leaders. Through contractual sponsorship and licensing and in collaboration with partners, we integrate our innovative solutions into the sustainable and environmentally-conscious economy.

Hydrogen Link holds a significant package of Intellectual Property in the field of new materials, catalysts and synthesis processes.

Hydrogen generator, 5 litres    

Hydrogen generators for fuel cell testing and anaeorobic setups


Please contact us with inquires related  to purchase of our hydrogen or oxygen generators, catalysts or catalyzed materials at contact@hydrogenlink.com


Hydrogen storage

        Sustainability and petroleum-independence of energy is one of the most imperative challenges of the modern world. As a renewable energy carrier, hydrogen – especially in combination with hydro, solar and wind energy sources -- is expected to become one of the critical components of the global sustainable energy system. Hydrogen can be produced from renewable electrical energy, stored indefinitely (unlike electrical energy), and converted back into electrical energy using fuel cells. Fuel cells provide electrical energy from hydrogen and oxygen, producing only water as a byproduct.

      The key advantage of hydrogen is the high energy density that fuel cell systems provide – a higher density than conventional battery systems. Over the past two decades, governments, automotive manufacturers, energy companies, and industrial and commercial businesses have been researching and developing uses for hydrogen in applications such as fuel cell powered automobiles, off-road mobile applications, and distributed and portable power generation systems.

      While fuel cell technology has advanced significantly in recent years, the question of efficiently and safely storing hydrogen still remains as the critical, unsolved challenge for the future hydrogen prospects. As a transitory solution, compressed hydrogen technology is presently used in demonstrations and prototypes (for example fuel cell car prototypes), where hydrogen is compressed under high pressure, approaching 700 bars (10 000 psi). Such extreme pressures are however not seen as suitable for general public use, and moreover, compressed gas is not a viable method for small-scale applications because such high-pressure reservoirs cannot be miniaturized. Therefore, a safe and efficient hydrogen storage method represents a pivotal challenge for the hydrogen economy, and especially for the widespread adoption of fuel cells.

      Solid-state hydrogen storage, which involves the use of hydrides, is potentially the ideal solution to the needs of a hydrogen infrastructure, enabling efficient and convenient handling and distribution of hydrogen. It also represents the most efficient route for small-scale PEM fuel cell applications, where it can take the form of either single-use hydrogen storage (irreversible hydrides) or in rechargeable storage (reversible hydrides).

An ideal metal hydride technology will have high storage capacity (measured in percentage of hydrogen by weight), temperature properties that do not involve excessive heat, and a highly reversible hydrogenation with long-term cyclability while maintaining full capacity. Although much research has been done on various metal hydride materials, none are yet developed that match all of these ideals. Therefore, development of a viable technology for the solid-state hydrogen storage has been a continuous focus of many research laboratories and government consortia.

Hydrogen Link has an established position in these activities related to hydrogen storage, fuel cells and complementary technologies, such as nano-catalyst technology.

Read more

 


Hydrogen Generation

      In general, there are two ways for the production of hydrogen from hydrogen-containing compounds. One is thermolysis of hydrides, i.e. decomposition of a hydride after heating to elevated temperature (hydrogen desorption).  Another method is production of hydrogen through a chemical reaction of hydrides with, for example water.  In this case, hydrogen is not only produced from the decomposed hydride, but also from the reactant molecules (e.g.water) which significantly increases the total amount of hydrogen produced.

These methods of hydrogen generation are referred to as “irreversible” because the decomposed molecule cannot be recovered into the hydrogen-bearing media by a simple exposure to hydrogen. They differ therefore from the “reversible hydrogen storage” (characterized by repeatable hydrogenation and dehydrogenation cycles).

 Thermal decomposition of hydrides and hydrogen containing compounds

      The method of thermal decomposition requires that the ideal hydride for irreversible hydrogen production should be stable at room temperature and decompose with controllable rates at temperatures between 60oC and 100oC, consequently generating more than 5 wt.% of hydrogen.  Since thermal decomposition of hydrides is directly related to their thermodynamics, amongst known hydrides only a few fulfill the above requirements, i.e. a relatively low stability and hydrogen capacity exceeding 5 wt.%. Although thermodynamic properties of these compounds seem to be favorable for the purpose of the low-temperature, irreversible decomposition, their use as hydrogen sources has been so far unsuccessful because of kinetic limitations, which move the practical hydrogen release temperature into the impractically high range. Nanocrystalline catalysts developed at Hydrogen Link were shown to be extremely effective in enhancing hydrogen-generating reactions and this approach is furter developed in the present research. 

 Hydrolysis reaction of hydrides

     Hydrolysis generates hydrogen according to a reaction, where hydrogen is being provided by both the hydride and the water molecule. In the same way, alcoholysis generates hydrogen from the hydrides and alcohols. These reactions are exceptionally advantageous, when the reacting medium (water) is added at the point of use, while transportation of dry hydrides are very weight-efficient. At Hydrogen Link,  hydrogen generation was developed through hydrolysis of irreversible complex hydrides that were previously known to be unreactive. These reactions are enabled by Hydrogen Link proprietary catalyst.  The use of such hydrides as catalyzed LiBH4 or catalyzed mixtures of alkali metal borohydrides with magnesium hydride maximizes the amount of hydrogen produced in hydrolysis up to unsurpassed capacities

Read more

 


Nano-catalysts for Hydrogenation and for Oxidation

Amongst the major achievements of Hydrogen Link researchers is the development of a family of unique, proprietary nanocatalysts which act as exceptional enablers in a multitude of reactions and processes.  These complex catalytic materials have a proprietary coordination arrangement, which emphasizes a novel concept of the complex interatomic interactions between the reactants and the catalyst. The concept allows the design of the specific catalyst composition for particular reactions, underlining the versatility between composition and properties of the resulting nano-catalyst compounds.

Hydrogen Link’s nanocatalysts (which in practice represent many possible combinations of specific molecular arrangements) are divided into two basic functional groups:

  •  Hydro-catalyst compounds – used in hydrogenation and hydrogen transfer reactions
  • Oxy-catalyst compounds – used in oxidative reactions such as advanced oxidation

Our catalyst materials exhibit outstanding efficiency in enabling or improving hydrogen transfer in these reactions, either through lowering the activation energy of hydrogen relocation or exchange or generation of one of the most powerful oxidative species – hydroxyl radicals.  These new catalysts are able to facilitate or enable many reactions,  specifically:

  • hydrogenation and dehydrogenation of a wide spectrum of compounds, including simple and complex metal hydrides, hydrocarbons and various organic compounds, reforming of hydrocarbons, alcohols, polymerization, cracking etc.
  • electrochemical reactions, including anodic and cathodic reactions, electrolysis of water and salts,
  • reactions in fuel cells
  • reduction/oxidation

 


Heterogeneous Oxycatalyst for Advanced Oxidation with Hydrogen Peroxide

Catalytic Advanced Oxidation is based on the use of a catalyst to form hydroxyl radicals in an oxidative process. This approach is especially advantageous from the environmental point of view, when hydrogen peroxide (H2O2) is used as a source of the oxidative species. Hydrogen peroxide produces only water and oxygen as its final decomposition product and therefore it is a uniquely pollution-less method for oxidative decontamination. Other approaches to water and air purification and disinfection that involve chlorination or bleaching with sodium hypochlorate NaOCl represent a toxic contribution themselves, being able to produce chlorine gas when dissolved in water.

 Catalytic Advanced Oxidation can be performed with the use of homogeneous catalysts (catalyst salts which are soluble in water,  for example Fenton reagent or manganese organic compounds) or heterogeneous catalysts (solid-state catalysts). While the homogeneous catalysts are more common, they have a disadvantage of remaining in the water solution after the treatment (being homogeneous i.e. soluble), thus offsetting the advantage of hydrogen peroxide producing only water. Heterogeneous catalysts on the other hand do not dissolve in the solution and can be recovered by simple sedimentation without additional treatment.  This benefit of heterogeneous catalysis is a key advantage of the advanced oxidation processes developed at Hydrogen Link. It uses our proprietary solid-state catalysts, as described above. The composition and molecular coordination of the catalyst was specifically designed to be capable to generate hydroxyl radicals with hydrogen peroxide with great efficiency (Oxycatalyst) .At the same time, its solid form minimizes the contribution of the soluble catalyst itself into the effluent after treatmen

Read more

 




by Dr. Radut.